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Some Motivation
Model of behaviour: X(S;f) := arg maxycs f(x)

f: incentives, what motivates a particular kind of actions, environment
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Some Motivation

Model of behaviour: X(S;f) := arg maxycs f(x)
f: incentives, what motivates a particular kind of actions, environment
S: constraints, rules of the environment, legal system, etc.
Comparative Statics: how changes in environment — in incentives f and/or constraints
S — translate into changes in behaviour X(S;f)
Examples:
Firm’'s input demand goes down when input’s price increases
When interest rate goes up new loans go down (and university enroliment also?)
In general too unruly — Monotone Comparative Statics
‘increasing’ S and/or f ‘increases’ X
Fine idea, but what is a higher maximiser when the alternatives are not real
numbers?

And what does a higher set of maximisers (or feasible set) mean? And what is an
increase in the function f?
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Overview

2. General Definitions
— Ordering Elements
— Ordering Sets
— Ordering Functions



Ordering Elements

Throughout: (X, >) partially ordered set

> is binary relation on X which is reflexive, transitive, and anti-symmetric.
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Ordering Elements

Throughout: (X, >) partially ordered set
> is binary relation on X which is reflexive, transitive, and anti-symmetric.
Join and Meet
e Joinof x,x’ € Xtaken wrt X: x vy x’ :=infly e X :y > xand y > x}.
x Vy x': >-smallest element in X which is larger than both x and x’.
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Ordering Elements

Throughout: (X, >) partially ordered set
> is binary relation on X which is reflexive, transitive, and anti-symmetric.
Join and Meet
e Joinof x,x’ € Xtaken wrt X: x vy x’ :=infly e X :y > xand y > x}.
x Vy x': >-smallest element in X which is larger than both x and x’.
e Meet of x,x" € X taken wrt X: x Ay X' := sup{y € X : x > yand x’ > y}.
x Ay X1 >-largest element in X which is smaller than both x and x’.
NB: inf and sup taken wrt >.
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Lattice

{ Definition

(i) (X,>)is a lattice iff it is a partially ordered set st. Vx,x’ € X, x Vy x' € X and
X Nx x e X.
(Joins and meets of elements in X exist in X.)
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Lattice

{ Definition

() (X,>) is a lattice iff it is a partially ordered set st. ¥x,x' € X, x Vx x' € X and

X Nx x e X.
(Joins and meets of elements in X exist in X.)

(i) (X,>) is a complete lattice iff it is a lattice s.t. VS C X, VxS = supy S € X and
AxS = infy S € X.
(Any subset of X attains its supremum and infimum in the set.)

(i) S C Xis a sublattice of a partially ordered set (X, >) iff vx,x’ € S, x vy x’ € Sand
xAxx' €S.
(Joins and meets of elements in S taken in X wrt > exist in S.)

(iv) S C Xis a complete sublattice of a partially ordered set (X, >) iff it is a sublattice
of (X,>) and,vS’ C S, supy S’ € Sandinfy S’ € S.
(Any subset of S attains its supremum and infimum taken in X wrt >in S.)
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lattice of N2.




Lattice

Examples

(1) ((0,1),>) and > natural order, is a lattice, but not a complete lattice.

(2) (R¥,>) and > natural product order is lattice.
V sublattice S C RK, Sis complete sublattice if and only if it is compact.
Further: (S, >) is then also a complete lattice.

(3) (0,1) C Ris sublattice of (R, >) with > natural order, but not a complete sublattice.

(4) Wrt natural product order, {(0, 0), (1,0), (0, 1), (2, 2)} is complete lattice, but not sub-
lattice of N2.

(5) Wrt natural product order, {(0, 0), (1,0),(0,1),(2,1),(1,2), (2,2)} is not a lattice.
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Ordering Sets

Unclear how to order sets based on partial order >;
there isn't an unequivocally ‘right’ way to do so.
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Ordering Sets
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Examples:
(1) S={0}and S’ = {2}
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Ordering Sets

Unclear how to order sets based on partial order >;
there isn't an unequivocally right’ way to do so.

Examples:

(1) S={0}and S’ = {2}
(2) S={0}and S’ ={1,2}
(8) S={0}and S ={-1,2}
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Ordering Sets

Unclear how to order sets based on partial order >;
there isn't an unequivocally right’ way to do so.

Examples:

(1) S={0}and S’ = {2}
(2) S={0}and S’ ={1,2}
(8) S={0}and S ={-1,2}
(4) S=[0,1and S =[1,2]
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Ordering Sets

Unclear how to order sets based on partial order >;
there isn't an unequivocally right’ way to do so.

Examples:

(1) S={0}and S’ = {2}

(2) S={0}and S’ ={1,2}

(8) S={0}and S ={-1,2}

(4) S=[0,1and S =[1,2]

(5 S=[01x[0,1Mand S =[1,2] x [1,2]
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Ordering Sets

Unclear how to order sets based on partial order >;
there isn't an unequivocally right’ way to do so.

Examples:

(1) S={0}and S’ = {2}

(2) S={0}and S’ ={1,2}

(8) S={0}and S ={-1,2}

(4) S=[0,1and S =[1,2]

(5 S=[01x[0,1Mand S =[1,2] x [1,2]
(6) S=10,1 x [0,1and S’ =[0,2] x [0,2]
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Ordering Sets

Definition (Strong Set Order)

S’ strong set dominates S (writing S’ >ss S)ifvx' € S/, x € S, xvx’ € S'andxAx’ € S.

S’ strong set dominates S if, taking any one element from each set, the join belongs to
the dominating set and the meet to the dominated set.

In some cases, the strong set order can be too demanding.
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Ordering Functions

{ Definition

Letf: Xx T — R,where X, T are partially ordered sets, and joins and meets of elements
in X x T are wrt product order.
(i) f satisfies the single-crossing property (SCP) in (x;t) if vx,x" € X, t,t’ € T, st.
x'>xandt' >t f(xX;t) = f(x;t) > (>)0 = f(;t") - f(x;t') > (>)0.
It satisfies the strict single-crossing property if last inequality is strict.
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t' >t (X t)—f(x;t') > f(x";t) = f(x; 1). It has strict increasing differences if last
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Letf: Xx T — R,where X, T are partially ordered sets, and joins and meets of elements
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t' >t (X t)—f(x;t') > f(x";t) = f(x; 1). It has strict increasing differences if last
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(iii) fis quasisupermodular (QSM) in (x, 1) ifVy,y' € X x T, f(y) - fy Ay") > (>)0 =
fly vy) - /) > ()o.




Ordering Functions

{ Definition

Letf: Xx T — R,where X, T are partially ordered sets, and joins and meets of elements
in X x T are wrt product order.

(i) f satisfies the single-crossing property (SCP) in (x;t) if vx,x" € X, t,t’ € T, st.
x'>xandt' >t f(xX;t) = f(x;t) > (>)0 = f(;t") - f(x;t') > (>)0.

It satisfies the strict single-crossing property if last inequality is strict.

(i) f has increasing differences (ID) in (x;t) if Vx,x’ € X, t,t’ € T, st x' > x and
t' >t (X t)—f(x;t') > f(x";t) = f(x; 1). It has strict increasing differences if last
inequality is strict.

(iii) fis quasisupermodular (QSM) in (x, 1) ifVy,y' € X x T, f(y) - fy Ay") > (>)0 =
fly vy) - /) > ()o.

(iv) fissupermodular (SM)in (x,t)ifVy,y € X x T, fy vy') = f(y") > f(y) = fy AY').
f is submodular if —f is supermodular.
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Ordering Functions

Definition

(i) f satisfies the single-crossing property (SCP) in (x;t) if vx,x" € X, t,t’ € T, st.
x'>xandt' >t f(xX;t) = f(x;t) > (>)0 = f(;t") - f(x;t') > (>)0.
(ii) fhas increasing differences (ID)in (x;t) if vx,x' € X,t,t' € T,st.x' >xandt >t
i) = fict) > f(x'; 1) = f(x; 1)
(iii) fis quasisupermodular (QSM) in (x,1)ifVy,y' € X x T, f(y) - fy Ay') > (>)0 =
flyvy)-1f(') > (>)0.
(iv) fissupermodular (SM)in (x,t)ifVy,y € X x T, fly vy) = f(y") > f(y) = fly AY').

NB:SM — {QSM, ID} — SCP.

SCP and QSM provide ordinal conditions on f, readily translatable into restrictions on
preference relations. ID and SM are respective cardinal counterparts.
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Ordering Functions

Definition

(i) f satisfies the single-crossing property (SCP) in (x;t) if vx,x" € X, t,t’ € T, st.
x'>xandt' >t f(xX;t) = f(x;t) > (>)0 = f(;t") - f(x;t') > (>)0.
(ii) fhas increasing differences (ID)in (x;t) if vx,x' € X,t,t' € T,st.x' >xandt >t
i) = fict) > f(x'; 1) = f(x; 1)
(iii) fis quasisupermodular (QSM) in (x,1)ifVy,y' € X x T, f(y) - fy Ay') > (>)0 =
flyvy)-1f(') > (>)0.
(iv) fissupermodular (SM)in (x,t)ifVy,y € X x T, fly vy) = f(y") > f(y) = fly AY').

NB:SM — {QSM, ID} — SCP.

SCP and QSM provide ordinal conditions on f, readily translatable into restrictions on
preference relations. ID and SM are respective cardinal counterparts.

Behavioural Implications: With finite data, preference relations on a lattice have (a) a
weakly monotone and quasisupermodular utility representation if and only if they

have (b) a weakly monotone and supermodular utility representation (Chambers &
Echenique 2009 JET)
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Ordering Functions

Proposition

(i) If f and g are supermodular real-valued functions on X, then af + Bg are super-
modular Vo, § > 0.

(i) If 3 strictly increasing g : R — R such that g o f is supermodular, then f is qua-
sisupermodular.

(i) If f € C%2iny € Y = X x T, then f is supermodular in y if and only if f>0,

Vi 7.
(iv) If X and Y are partially ordered sets, X x Y is a lattice with respect to the product

order,and f : X x Y — Riis supermodular, then g(x) := supycy f(x,y) is super-
modular.

By By

(Proof left as an exercise.)
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Ordering Functions

SM, QSM, ID, SCP are properties of a function.

But, we can think of f(x, t) as defining a family of functions on X parametrised by t,
fe(x) := f(x, 1)

We can adjust definitions to order functions!

Definition

Let v, u be two real-valued functions on X; v single-crossing dominates u (v >sc¢ u) if
vx,x" € X such that x’ > x, u(x’) — u(x) > (>)0 = v(x’) - v(x) > (>)0.
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Overview

3. Monotone Comparative Statics of Individual Choices



Strong Monotone Comparative Statics

Theorem (Milgrom & Shannon 1994 Theorem 4)

Let X be a lattice and v, u be two real-valued functions on X. v and u are quasisupermod-
ular and v single-crossing dominates v if and only if, for S’ >ss S, X(S';v) >ss X(S; u).

A very powerful result!
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Then
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= u(x) - u(xAx)>0 optimality of x
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Theorem (Milgrom & Shannon 1994 Theorem 4)

Let X be a lattice and v, u be two real-valued functions on X. v and u are quasisupermod-
ular and v single-crossing dominates u if and only if, for S’ >ss S, X(S';v) >ss X(S; u).

Proof

— :Take any x € X(S;u),x" € X(S';v).
AsS' >ss S wehavexAx e Sandxvx €8,

Then
x € X(S;u)
= ux)-uxAx)>0 optimality of x
= uxvx)-uK)>0 quasisupermodularity of u
= v(xVvx)-v(x)>0 V>so U
= xVvx eX(@S;v) optimality of x';
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Strong Monotone Comparative Statics

Theorem (Milgrom & Shannon 1994 Theorem 4)

Let X be a lattice and v, u be two real-valued functions on X. v and u are quasisupermod-
ular and v single-crossing dominates u if and only if, for S’ >ss S, X(S';v) >ss X(S; u).

Proof

— :Take any x € X(S;u),x" € X(S';v).
As S >gs S, wehavex Ax' e Sandxvx €.
Thenx € X(S;u) = xVvx € X(S;v)

and
X e X(S;v)
= v(xvx)-v(x)<0 optimality of X’
= v(x)-vixAx) <0 quasisupermodularity of v
= u() - u(xAx) <0 V >se U
= xAX € X(S;u) optimality of x.
Llanan VIO N VIO N\

Gongalves (UCL) 4. Monotone Comparative Statics of Individual Choices



Strong Monotone Comparative Statics

Theorem (Milgrom & Shannon 1994 Theorem 4)
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Takev=u-="f.
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Let X be a lattice, S a sublattice, and f : X — R. If f is quasisupermodular, then X(S;f)
is a sublattice of S.

Proof

Takev =u=fandS =S Hence X(S;f) >ss X(S;1). O
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{ Theorem (Milgrom & Shannon 1994 Theorem 4)

Let X bealatticeand v,u : X — R. vand u are quasisupermodular and v single-crossing
dominates u if and only if, for S’ >gs S, X(S';v) >ss X(S; ).

{ Theorem (Milgrom & Shannon 1994 Theorem 4’)

Let X be a lattice and v,u : X — R. v and u are quasisupermodular and v strictly single-
crossing dominates u then vx' € X(S';v),x € X(S;u), X' > x.

any maximiser in X(S’; v) is greater than any maximiser in X(S; u)!
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4. More



More

e Comparative statics in choice and risk and uncertainty: Athey (2002 QJE).
e Comparative statics of equilibrium outcomes: more later.

e Applications: Macro: Effects of changes in consumers’ preferences on prices and
output (Acemoglu & Jensen 2015 JPE). Econometrics: Nonparametric identification
(Lazzati 2015 QE). Health: Junior doctors’ residency programme matching (Agarwal
2015 AER)
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